Binding Layers Level 0
An abstract multi-purpose component layer

Olivier Dalle

Université Nice Sophia Antipolis

13S UMR CNRS 7172& INRIA CRI-SAM
2004 Route des Lucioles - BP 93
06903 Sophia Antipolis, FRANCE

olivier.dalle@unice.fr

SCADA Workshop
Sophia Antipolis, November 28, 2013

Olivier Dalle Binding Layers Level 0

Summary of the presentation

@ Introduction
@ Previous work: OSA Project (with J. Ribault)
@ Simulation-oriented components: DEVS

© Problem Statement
@ Level 0: an Abstract Component Model
@ Other Issues addressed in Binding Layers Project

© Binding Layers Explained
o Level 0
@ Upper Levels

@ Conclusions & Perspectives

Olivier Dalle Binding Layers Level 0

Introduction
Previous work: OSA Project (with J. Ribault)
Simulation-oriented components: DEVS

Motivations

“Build from scratch or reuse?”

@ There is no perfect simulator BUT

o All the elements of your perfect simulator probably exist.
e if not, build only the missing part !

“Can we trust our simulation results ?”

@ Trust comes from validation step (cf. VV&A)

@ More reusing — less validation

“Which credibility in comparing results with others studies 7"

@ More sharing — more credibility

Olivier Dalle Binding Layers Level 0

Introduction

Previous work: OSA Project (with J. Ribault)
Simulation-oriented components: DEVS

Objectives

@ Separation of modeling concerns
e — component-based framework

Separation of simulation concerns
e — layered approach

Bridge between concerns

e — aspect-oriented programming

o Backup and replayability
@ — maven project management
e GOAL

e build from or reuse existing parts from others simulators and
third-party tools

Olivier Dalle Binding Layers Level 0

Introduction

Previous work: OSA Project (with J. Ribault)
Simulation-oriented components: DEVS

Open Simulation Architecture

A component-based framework

I 1 1+ controller

L sub- ==
companent
L.

I

—
e
. mtlnﬂawa

D - = D

Component's membrane (Fractal controllers)
Super Controller

il

Life-Cycle Controller

Binding Controller
Name Controller

Simulation Controller Attribute Controller

& . =g
Interactions “gﬂm s Interactions %g
(e) W. other comps. 3

OSA extends Fractal Components

ers Level 0

Olivier Dalle Binding

Introduction

Previous work: OSA Project (with J. Ribault)

Simulation-oriented components: DEVS

Open Simulation Architecture
A layered approach

SIMULATION

ARCHITECTURE

CONTROL

DESCRIPTION

Simulator Engine /

-------------- Simulation APl ===============
The Fractal Component
ommmlae s .

fmmmm=

System Model } System Scenario

Olivier Dalle Binding Layers Level 0

Introduction

Previous work: OSA Project (with J. Ribault)

Simulation-oriented components: DEVS

Open Simulation Architecture

aspect-oriented programming

OOP |OOP + AOP

Aspect source

-{Instrumentation X

Instrumentation X

Instrumentation X

AOP J

WEAVER

. Functional Code l:‘ Code to instrument variable X

. Code to instrument variable Y

Olivier Dalle Binding

x (5) y (3

Introduction
Previous work: OSA Project (with J. Ribault)
Simulation-oriented components: DEVS

DEVS formalism

Anatomy of a component

@ Components are similar to objects

<X, Y, 5, 0int; Oext; A, ta > @ Ports/Connectors: Data-flow
(carry bags of events)

| @ Strong semantic of operation:
— s'= am(stx —
e X,Y,S : Input events, Output
@ events States
Oint : S —S

(Internal transition function)

Ts ———Is'=5,,(9)

v ta(s) (1). @ Oext :SXXXxT—=S
N (External transition function)
o N:S5—>Y
(Image: G. Wainer) (Output function)
e ta:S—T

(Time advance function)

Olivier Dalle Binding Layers Level 0

Introduction
Previous work: OSA Project (with J. Ribault)
Simulation-oriented components: DEVS

DEVS formalism

DEVS Assemblies

GEN-BUF-PROC
BUF-PROC
out . m g——— . L — 5
GEN ; BUEF [° I PROC [OUL———fout,

@ Strong Semantics
< X7 Y: D) {Mi}7 {Ii}7 {ZIJ}a sel >

) i) X, Y: Inputs and outputs
Hierarchical: atomic vs. coupled

Oriented Bindings

D: Set of names
M;,i € D: basic DEVS

Multi-points Bindings
. p. ; & < Xi, Yi, Siy Ointis Oextis Ais taj >

Olivier Dalle Binding Layers Level 0

Problem Statement Level 0: an Abstract Component Model
Other Issues addressed in Binding Layers Project

Very Large component-based architectures

Large architectures are quite common in simulation. ..

@ Global world-size telecommunications
@ Road traffic

Body cells

°
@ Particles
°

... New web-based services reach unprecedent scale

@ Today: Twitter, Google, FB, ...

@ Tomorrow??

Olivier Dalle Binding Layers Level 0

Problem Statement Level 0: an Abstract Component Model
Other Issues addressed in Binding Layers Project

How to build very large component-based architectures?

North face approach. ..

What if result it is not
@ Choose a component model ’
satisfactory?

@ Read docs. .. RESTART from

...scratch your head for long hours... | gscracth?

@ ...Build hello world example @ Component content
(without following tutoriall) (code) might be

@ Design the big architecture. . . reusable. ..
... Using proprietary tools/language © ...but the

architecture?

...and pray.

Olivier Dalle Binding Layers Level 0

Problem Statement Level 0: an Abstract Component Model
Other Issues addressed in Binding Layers Project

Separation of Concerns

Architecture vs. Behavior Software (engineering) concerns
@ Architecture = assemblies @ Security, confidentiality

@ Behavior = code Persistence

Simulation concerns

@ Model subject of study

Reconfiguration/life cycle

)) Real time
Build scenario(s) -
ebugging

°
°
@ Fault detection/recovery
°

Instrument, Observe :

o
o
@ Collect and process data
o
o

Distribute execution How to Separate Concerns?
e And REUSE them!

Olivier Dalle Binding Layers Level 0

Problem Statement Level 0: an Abstract Component Model
Other Issues addressed in Binding Layers Project

Example of a many concerns simulation

Simulation of a “Digital City" project

X4
o
. ,Dﬂ\/, |
Modeling (*‘73\)’ i
Layers O‘E%Q' ;
Water Flooding :
Fre Spread - Bpad Newark Laer,
ire Spreading ‘
ANININNNANNY
N B
Electrical Network ’\\\\\\ \\\\>
N RARRIRA R R
Water Network IENAN AN
AN A AR R AR R S e
Road Network (> A NN NS Y N A NN NN N N 37
Data Network L -
IS /0,, s 5 o Simulation
S & . . S & & . .
& & S & Layers
& o & & » RORGa zb/& >
F & F L & R S
& P & $F
) N O
~ N

Olivier Dalle Binding Layers Level 0

Problem Statement Level 0: an Abstract Component Model
Other Issues addressed in Binding Layers Project

The problem with hierarchy

componen T OSI Layers .

hierarchy PP“W Cappieasonr] 4" A choice has to be made
\ ™ What is ouside ?

T/)V(:hlhdl)‘;’?“ presentation (lmp”es What |S inSIde)

linteractiot

presentation|

presentation
entity

A

ol How to focus only on
the "inside” level?

session
entity

@ Deeply burried

transport

@ Scattered ...

Olivier Dalle Binding Layers Level 0

Level 0
Binding Layers Explained Upper Levels

Unified Architecture API

My Dream Component API

@ model=InitModel(“AModel.cfg”, “path/to/app.cfg”)
@ hello=model.Createlnstance(“Hello™")

© world=model.Createlnstance(“World")

© model.Connect(hello,world)

@ model.Go!()

A\

Challenge

Make it work with (m)any component model!

Olivier Dalle Binding Layers Level 0

Level 0
Binding Layers Explained Upper Levels

Core Principles of API

Main Assumptions/Constraints

@ Components have object semantics

@ Bindings can be multi-points
@ Bindings are oriented

Hide any specific details

o
@ Construction support mandatory
o

Destruction support optional

Olivier Dalle Binding Layers Level 0

Level 0
Binding Layers Explained Upper Levels

Specific Issues to be Address

Sequence of operations
Attachment details
Details of instance creation

Unsupported operations

Olivier Dalle Binding Layers Level 0

Level 0
Binding Layers Explained Upper Levels

Binding Layers Level 0 Specification

(BL-CAM) : (LCM)

component
binding
component

- - --qrealization

architecture o
speciﬁcation)» o ©

Level 0 API

requests ‘ LCM run-time \
sent to LCMI ="~ ‘ LCM API

Demol!
(previous version. . .)

Olivier Dalle Binding Layers Level 0

Level O
Binding Layers Explained Upper Levels

Level 1

Dynamicity support

Add support for programming layers
@ Built on top of Level 0 API

@ Provide a simple scripting language

@ Support for automatic configuration

Layer Definition:

*\ Bootstap(white)
Induce('C5’, white, count=3)

@ Boostrap(type, count)

\\1nduce(’C>0’. white, count=3)

@ Induce(predicate, type,
count)

e Bind(Predicate,Predicate)

- “Induce('C> o A hite - black, count=2)

Olivier Dalle Binding Layers Level 0

Level O

Binding Layers Explained Upper Levels
Level 1
Example
Layer Instructions: 1d=C
Bootstrap(C) ~~ "~~~ T~/
Bootstrap(C) Y

Induction('=C;",C)

Binding('=C12','=G3")

Layer Instructions:

Bootstrap(C)
Bootstrap(C)

Olivier Dalle Binding Layers Level 0

Level O
Binding Layers Explained Upper Levels

On-demand instance creation

Induce_or_connect

serverl

(1) induce_or_connect(‘client.*’,’server’,’client:server?)
(2) induce(‘server.*?,’worker’,’server:worker?’,count=5)
(3) induce_or_connect (‘worker.*’,’DB?, *worker:db?’)

Olivier Dalle Binding Layers Level 0

Level O
Binding Layers Explained Upper Levels

Level 2

Support for extension and sharing

Add support for multiple layers

@ A layer can extend another
o Extender can replace/remove extendee’s instructions

@ Extender can share with extendee

Special feature

NO CLOSURE: a layer is NOT a component — NO Hierarchy
CLAIM: Hierarchy is believed to be hindering Separation of
Concern.

SUBSTITUTE: Component Sharing

Olivier Dalle Binding Layers Level 0

Level O
Upper Levels

Binding Layers Explained

Level2
Example of sharing & extension
Layer A, extends B,Cr .
CA1 \\ N
/(’Q\(O \ \\
|
Q Ca | Cas v
l’ // !
- /
| Layer B= K
/

Olivier Dalle Binding Layers Level 0

Level O
Binding Layers Explained Upper Levels

Level 3

Layer Algebra

\ Origin layer definition:

! Layer "Foo" ,\dispatch=fc(C), count=4

, O
\ Bootstrap(...)
Y Induce(...)
* Bind(...)
Partition
Transformation

Top Layer definition:

Layer "Foo—top", extends "Foo—{1-4}
Bootstrap(...)
Induce(...)
Bind(...)

Sub-Layer definitions:

Layer "Foo—1": Layer "Foo-2": .
Bootstrap(...)
Induce(...)

Olivier Dalle Binding Layers Level 0

Conclusions & Perspectives

Conclusions

Benefits of Level0 Abstract API

@ Allows switching model

o Testing/debugging
@ Simple programming

@ Self-contained

@ Base for bigger things

Olivier Dalle Binding Layers Level 0

Conclusions & Perspectives

Project Status
Level 0

Almost there !

@ Specification complete (Draft soon available)

@ Some early implementation (Java)
o Fractal
e Dummy

@ More validation to come

e DEVS
e Process-and-pipe

Olivier Dalle Binding Layers Level 0

Conclusions & Perspectives

Project Status

Upper levels

Work in progress. . .

@ Level 1: working on specs and proto

@ Level 2: seems to work on paper

@ Level 3: some ideas need further thinking
°

Level 4: maybe an aspect language for weaving layers?

Olivier Dalle Binding Layers Level 0

Conclusions & Perspectives

Thank you!

Questions and comment are welcomel!

Olivier Dalle Binding Layers Level 0

Conclusions & Perspectives

POSIX Process-and-pipes

Anatomy of a component

file descriptor
process 0
0

business
code

=
LT

file descriptor
process
0

business
code

Olivier Dalle

Components are POSIX process

(]

Component have a (system)
context

@ Ports/Connectors: file descriptors
o Content: “business” code
@ API: System calls

Binding Layers Level 0

Conclusions & Perspectives

POSIX Process-and-pipes

Component assemblies

| FIFo1 ——! Processus(1)

[Processus(4) Processus(2)
w FIFO4 | »J

Processus(3) <—4;\ FIFO3™

@ Flat structure @ Dynamic Bindings

o Oriented Bindings @ (re-)configuration tricky

@ opening sequence

@ Multi-points Bindings o deadlocks

Olivier Dalle Binding Layers Level 0

	Introduction
	Previous work: OSA Project (with J. Ribault)
	Simulation-oriented components: DEVS

	Problem Statement
	Level 0: an Abstract Component Model
	Other Issues addressed in Binding Layers Project

	Binding Layers Explained
	Level 0
	Upper Levels

	Conclusions & Perspectives

